

(本试剂盒仅供体外研究使用,不用于临床诊断!)

总蛋白测定试剂盒(双缩脲法) Total protein (TP) Assay Kit (Biuret Method)

产品货号: BC00047

产品规格: 100T

使用前请仔细阅读说明书。如果有任何问题,请通过以下方式联系我们:

☑邮箱 (销售) order@enkilife.cn

☑邮箱(技术支持) tech@enkilife.cn

36公司电话 027-87002838

订阅微信公众号

获取更多技术 信息及前沿动态

保质期: 请见试剂盒外包装标签。

技术支持: 为了更好地给您提供服务, 联系时请告知产品外包装标签上批号。

基本信息

产品中文名称	总蛋白测定试剂盒(双缩脲法)
产品英文名称	Total protein (TP) Assay Kit (Biuret Method)
检测方法	Colorimetric
样品类型	组织、血清、血浆
检测类型	Quantitative
检测仪器及波长	酶标仪(520-580 nm,最佳检测波长 540nm)
检测范围	10-100g/L
灵敏度	0.8993g/L

产品简介

蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一。

产品特点

★ 本试剂盒能够微量快速地进行蛋白质测定,操作简便,快速省时,可节省大量试剂,并能一次测定大量样品。

检测原理

凡分子中含有两个氨基甲酰基(—CONH₂)的化合物都能与碱性铜溶液作用,形成紫色复合物,这一反应称为双缩脲反应,蛋白质分子中有许多肽键(—CONH—)都能起此反应,各种蛋白显色程度基本相同。可以在 520-580nm 检测吸光度(最佳检测波长 540nm),产物紫色越深,说明蛋白质含量越高,反之则蛋白质含量越低。据此通过比色分析就可以计算出蛋白质含量。

产品组分

编号	产品名称	包装规格 (100T)	保存方式
试剂一	硫酸铜	粉剂 x 1 瓶	-20℃,开瓶后 2-8℃保存,6 个月有效。
试剂二	碱试剂	粉剂 x 1 瓶	-20℃,开瓶后 2-8℃避光保存,6 个月有效。
试剂三	100g/L 蛋白标准液	575μL x 1 支	-20℃,开瓶后-20℃ 保存,6 个月有效。
耗材一	96 孔酶标板	1 板	RT
耗材二	96 孔覆膜	2 张	RT

保存条件

未拆封的试剂盒可在 -20℃保存 12 个月。

实验前准备

• 样品处理

- 1. 血清血浆等液体样本:可直接测定。
- 2. 组织样本:匀浆介质是 PBS (0.01 M, pH 7.4) 或生理盐水 (0.9% NaCl) ,匀浆离 心后取上清进行测定。
- 3. 样本的稀释:在正式检测前,需选择预期差异大的 2-3 个样本,稀释成不同浓度进行预实验,根据预实验的结果,结合本试剂盒的线性范围: 10-100 g/L,不同样本稀释比例如下表(仅供参考):

样本	稀释倍数	样本	稀释倍数
人血清	不稀释	人血浆	不稀释
大鼠血清	2-4	小鼠血浆	不稀释
兔血清	不稀释	鸡血浆	不稀释
马血清	1-3	猪血浆	1-3

狗血请	2-4	10%大鼠脾脏组织	不稀释
10%小鼠肝组织	不稀释	10%小鼠肾组织	不稀释

注:稀释液为生理盐水 (0.9% NaCl) 或 PBS (0.01 M, pH 7.4)。

• 试剂盒的准备工作

- 1. 试剂三从-20℃取出,放在冰上缓慢融化(避免反复冻融),其他试剂平衡至室温。
- 2. 试剂一工作液的配制: 取一瓶试剂一用 10 mL 双蒸水溶解, 2-8℃保存 3 个月。
- 3. 试剂二工作液的配制:取一瓶试剂二用 20 mL 双蒸水溶解, 2-8℃保存 3 个月。
- 4. 双缩脲工作液的配制:按试剂一工作液:试剂二工作液为 1:2 的体积比混匀,配好后的工作液可在 2-8℃下保存 1 天。

操作流程

- 1. 空白孔:取 5µL 水,加入到酶标板对应的空白孔中;标准孔:取 5µL 不同浓度的蛋白标准品,加入到酶标板对应的标准孔中;测定孔:取 5µL 的待测样本,加入到酶标板对应的测定孔中。
- 2. 向步骤(1)中的各孔加入 250µL 双缩脲工作液。
- 3. 酶标仪振板 5 s, 37℃准确孵育 10 min。
- 4. 酶标仪 540 nm 处, 测定各孔 OD 值。

操作表如下:

	空白孔	标准孔	测定孔
双蒸水(μL)	5		
蛋白标准品(µL)		5	
待测样本(μL)			5
双缩脲试剂(μL)	250	250	250

酶标仪振板 5 s, 37℃准确孵育 10 min, 540 nm 处测定各孔 OD 值。

结果计算

1. 标准曲线法

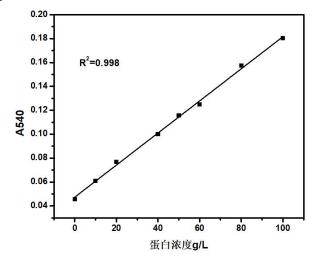
标准品拟合曲线: y = ax + b

血清、血浆、组织匀浆等液体样本中总蛋白含量计算公式:

总蛋白浓度 = (ΔA540 - b) ÷ a × f (g/L)

y: 标准品 OD 值-空白 OD 值(标准品浓度为 0 时的 OD 值)

x: 吸光度对应的浓度


a: 标准曲线斜率

b: 标准曲线截距

ΔA540: 样本测定 OD 值-空白 OD 值

f: 样本加入检测体系前的稀释倍数

以下标准曲线仅供参考:

2. 单点计算法

注意事项

- 1. 切记不能将试剂一、试剂二粉剂混合后再加水溶解。
- 2. 实验前请仔细阅读说明书并调整好仪器,严格按照说明书进行实验。
- 3. 实验中请穿着实验服并戴乳胶手套做好防护工作。
- 4. 本试剂盒适合检测蛋白含量在 10~100g/L 的样本,如蛋白含量高于 100g/L,须用生理盐水稀释至此范围内。

5.	本产品仅限于专业人员的科学研究用,	不得用于临床诊断或治疗,	不得用于食品或药品,
	不得存放于普通住宅内。		